Coset Analysis of Reed Muller Codes Via Translates of Finite Vector Spaces

نویسندگان

  • Robert P. Kurshan
  • N. J. A. Sloane
چکیده

In order to calculate the error probability of a code it is necessary to know the distribution of the coset leaders. The enumeration of cosets of the first order Reed Muller code has been studied (i) by Berlekamp and Welch (1972) by associating with each coset a class of Boolean functions, and (ii) by Sloane and Dick (1971) by associating with each coset a class of single-error-correcting codes called structure codes. It is shown here that it is possible to have two vectors of the same weight and in the same coset, which yet have inequivalent structure codes, at least for lengths /> 128, thus giving a negative answer to a question raised by Sloane and Dick.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Reed - Muller Codes

R~sum~. On inlroduit une classe de codes lintaires de la famille des codes de Reed-Muller, les codes de Reed-Muller projectifs. Ces codes sont des extensions des codes de Reed-Muller gtntralists ; les codes de Reed-Muller projectifs d'ordre I atteignent la borne de Plotkin. On donne les traram&res des codes de Reed-Muller projecfifs d'ordre 2. 1.Introduction We note pm(Fq) the projective space ...

متن کامل

Group Structure on Projective Spaces and Cyclic Codes over Finite Fields

We study the geometrical properties of the subgroups of the mutliplicative group of a "nite extension of a "nite "eld endowed with its vector space structure and we show that in some cases the associated projective space has a natural group structure. We construct some cyclic codes related to Reed}Muller codes by evaluating polynomials on these subgroups. The geometrical properties of these gro...

متن کامل

The shift bound for cyclic, Reed-Muller and geometric Goppa codes

We give a generalization of the shift bound on the minimum distance for cyclic codes which applies to Reed-Muller and algebraicgeometric codes. The number of errors one can correct by majority coset decoding is up to half the shift bound. 1991 Mathematics Subject Classification: 94B27, 14H45.

متن کامل

Limitations of single coset states and quantum algorithms for code equivalence

Quantum computers can break the RSA, El Gamal, and elliptic curve public-key cryptosystems, as they can efficiently factor integers and extract discrete logarithms. The power of such quantum attacks lies in quantum Fourier sampling, an algorithmic paradigm based on generating and measuring coset states. In this article we extend previous negative results of quantum Fourier sampling for Graph Is...

متن کامل

Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields

In this talk, we will look at decoding Reed-Muller codes beyond their minimum distance when the errors are random (i.e., in the binary symmetric channel). A recent beautiful result of Saptharishi, Shpilka and Volk showed that for binary Reed-Muller codes of length n and degree n O(1), one can correct polylog(n) random errors in poly(n) time (which is well beyond the worst-case error tolerance o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information and Control

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1972